

This is a sample of "Refactoring to Collections" by Adam Wathan.

To learn more about the book and read the rest, head over to
http://adamwathan.me/refactoring-to-collections.

http://adamwathan.me/refactoring-to-collections

Contents

A Bit of Theory 7

Imperative vs. Declarative Programming . 7

Imperative Programming . 7

Declarative Programming . 9

Higher Order Functions . 11

Noticing Patterns . 12

Functional Building Blocks . 16

Each. 16

Map . 18

Filter . 22

Reduce . 26

Transforming Data . 34

Thinking in Steps . 36

The Problem with Primitives . 38

Arrays as Objects . 40

Introducing Collections . 41

A Note on Mutability. 43

Quacking Like... an Array? . 45

The Golden Rule of Collection Programming 52

A Lot of Practice 54

Pricing Lamps and Wallets . 55

Replace Conditional with Filter . 57

Replace || with Contains . 58

Reduce to Sum . 59

Replace Nested Loop with FlatMap . 61

Plucking for Fun and ProMt . 64

CSV Surgery 101. 65

Everything is Better as a Collection . 68

Binary to Decimal . 70

A Quick Refresher . 70

Using a For Loop . 70

Breaking It Down . 71

Reversing the Collection. 72

Mapping with Keys . 73

What's Your GitHub Score? . 76

Loops and Conditionals . 77

Replace Collecting Loop with Pluck . 78

Extract Score Conversion with Map . 80

Replace Switch with Lookup Table . 82

Associative Collections . 83

Extracting Helper Functions . 86

Encapsulating in a Class . 87

Formatting a Pull Request Comment . 94

Concatenating in a Loop . 94

Map and Implode. 95

Stealing Mail . 96

Replace Nested Check with Contains . 98

Contains as a Higher Order Function . 99

Choosing a Syntax Handler . 102

Looking for a Match . 103

Getting the Right Checker . 104

Replace Iteration with First . 105

A Hidden Rule. 106

Providing a Default . 107

The Null Object Pattern . 108

The Null Checker . 109

Tagging on the Fly. 112

Extracting the Loop. 113

Normalizing with Map . 115

Nitpicking a Pull Request . 117

A Fork in the Code. 118

Learning from Smalltalk . 119

Collection Macros . 121

Chainable Conditions . 122

Comparing Monthly Revenue . 125

Matching on Index. 126

Zipping Things Together . 127

Using Zip to Compare. 127

Transposing Form Input . 129

Quick and Dirty . 133

Identifying a Need . 134

Introducing Transpose . 136

Implementing Transpose . 138

Transpose in Practice . 138

Ranking a Competition . 140

Zipping-in the Ranks . 142

Dealing with Ties . 143

One Step at a Time . 144

Grouping by Score. 145

Adjusting the Ranks . 147

Collapse and Sort . 150

Cleaning Up. 152

Grouping Operations . 155

Breaking the Chain . 156

The Pipe Macro . 157

A�erword 160

Higher Order Functions
A higher order function is a function that takes another function as a
parameter, returns a function, or does both.

For example, here's a higher order function that wraps a block of code in a
database transaction:

public function transaction($func)

{

$this->beginTransaction();

try {

$result = $func();

$this->commitTransaction();

} catch (Exception $e) {

$this->rollbackTransaction();

throw $e;

}

return $result

}

And here's what it would look like to use:

try {

$databaseConnection->transaction(function () use ($comment) {

$comment->save();

});

} catch (Exception $e) {

echo "Something went wrong!";

}

11 Part 1. A Bit of Theory

Noticing Patterns

Higher order functions are powerful because they let us create abstractions
around common programming patterns that couldn't otherwise be reused.

Say we have a list of customers and we need to get a list of their email
addresses. We can implement that without any higher order functions like this:

$customerEmails = [];

foreach ($customers as $customer) {

$customerEmails[] = $customer->email;

}

return $customerEmails;

Now say we also have a list of product inventory and we want to know the total
value of our stock of each item. We might write something like this:

$stockTotals = [];

foreach ($inventoryItems as $item) {

$stockTotals[] = [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

}

return $stockTotals;

At Mrst glance it might not look like there's much to abstract here, but if you
look carefully you'll notice there's only one real diLerence between these two
examples.

In both cases, all we're doing is building a new array of items by applying some
operation to every item in the existing list. The only diLerence between the
two examples is the actual operation that we apply.

Chapter 2. Higher Order Functions 12

In the Mrst example we're just extracting the email Meld from the item:

$customerEmails = [];

foreach ($customers as $customer) {

$email = $customer->email;

$customerEmails[] = $email;

}

return $customerEmails;

In the second example, we create a new associative array from several of the
item's Melds:

$stockTotals = [];

foreach ($inventoryItems as $item) {

$stockTotal = [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

$stockTotals[] = $stockTotal;

}

return $stockTotals;

If we generalize the names of everything except the two chunks of code that
are diLerent, we get this:

$results = [];

foreach ($items as $item) {

$result = $item->email;

$results[] = $result;

}

return $results;

13 Part 1. A Bit of Theory

$results = [];

foreach ($items as $item) {

$result = [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

$results[] = $result;

}

return $results;

We're close to an abstraction here, but those two pesky chunks of code in the
middle are preventing us from getting there. We need to get those pieces out
and replace them with something that can stay the same for both examples.

We can do that by extracting those chunks of code into anonymous functions.
Each anonymous function just takes the current item as its parameter, applies
the operation to that item, and returns it.

Here's the email example aRer extracting an anonymous function:

$func = function ($customer) {

return $customer->email;

};

$results = [];

foreach ($items as $item) {

$result = $func($item);

$results[] = $result;

}

return $results;

...and here's the inventory example aRer the same extraction:

Chapter 2. Higher Order Functions 14

$func = function ($item) {

return [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

};

$results = [];

foreach ($items as $item) {

$result = $func($item);

$results[] = $result;

}

return $results;

Now there's a big block of identical code in both examples that we can extract
into something reusable. If we bundle that up into its own function, we've
implemented a higher order function called map!

function map($items, $func)

{

$results = [];

foreach ($items as $item) {

$results[] = $func($item);

}

return $results;

}

$customerEmails = map($customers, function ($customer) {

return $customer->email;

});

15 Part 1. A Bit of Theory

$stockTotals = map($inventoryItems, function ($item) {

return [

'product' => $item->productName,

'total_value' => $item->quantity * $item->price,

];

});

Functional Building Blocks
Map is just one of dozens of powerful higher order functions for working with
arrays. We'll talk about a lot of them in later examples, but let's cover some of
the fundamental ones in depth Mrst.

Each

Each is no more than a foreach loop wrapped inside of a higher order function:

function each($items, $func)

{

foreach ($items as $item) {

$func($item);

}

}

You're probably asking yourself, "why would anyone bother to do this?" Well for
one, it hides the implementation details of the loop (and we hate loops.)

Imagine a world where PHP didn't have a foreach loop. Our implementation of
each would look something like this:

function each($items, $func)

{

for ($i = 0; $i < count($items); $i++) {

$func($items[$i]);

}

}

Chapter 3. Functional Building Blocks 16

In that world, having an abstraction around "do this with every item in the
array" seems pretty reasonable. It would let us take code that looks like this:

for ($i = 0; $i < count($productsToDelete); $i++) {

$productsToDelete[$i]->delete();

}

...and rewrite it like this, which is a bit more expressive:

each($productsToDelete, function ($product) {

$product->delete();

});

Each also becomes an obvious improvement over using foreach directly as soon
as you get into chaining functional operations, which we'll cover later in the
book.

A couple things to remember about each:

• If you're tempted to use any sort of collecting variable, each is not the
function you should be using.

// Bad! Use `map` instead.

each($customers, function ($customer) use (&$emails) {

$emails[] = $customer->email;

});

// Good!

$emails = map($customers, function ($customer) {

return $customer->email;

});

• Unlike the other basic array operations, each doesn't return anything.
That's a clue that it should be reserved for performing actions, like deleting
products, shipping orders, sending emails, etc.

17 Part 1. A Bit of Theory

each($orders, function ($order) {

$order->markAsShipped();

});

Map

We've talked about map a bit already, but it's an important one and deserves its
own reference.

Map is used to transform each item in an array into something else. Given some
array of items and a function, map will apply that function to every item and
spit out a new array of the same size.

Here's what map looks like as a loop:

function map($items, $func)

{

$result = [];

foreach ($items as $item) {

$result[] = $func($item);

}

return $result;

}

Remember, every item in the new array has a relationship with the
corresponding item in the original array. A good way to remember how map

works is to think of there being a mapping between each item in the old array
and the new array.

Map is a great tool for jobs like:

• Extracting a Meld from an array of objects, such as mapping customers
into their email addresses:

Chapter 3. Functional Building Blocks 18

$emails = map($customers, function ($customer) {

return $customer->email;

});

• Populating an array of objects from raw data, like mapping an array of
JSON results into an array of domain objects:

$products = map($productJson, function ($productData) {

return new Product($productData);

});

• Converting items into a new format, for example mapping an array of
prices in cents into a displayable format:

$displayPrices = map($prices, function ($price) {

return '$' . number_format($price / 100, 2);

});

Map vs. Each

A common mistake I see people make is using map when they should have used
each.

Consider our each example from before where we were deleting products. You
could implement the same thing using map and it would technically have the
same eLect:

map($productsToDelete, function ($product) {

$product->delete();

});

Although this code works, it's semantically incorrect. We didn't map anything
here. This code is going to go through all the trouble of creating a new array
for us where every element is null and we aren't going to do anything with it.

Map is about transforming one array into another array. If you aren't
transforming anything, you shouldn't be using map.

19 Part 1. A Bit of Theory

As a general rule, you should be using each instead of map if any of the following
are true:

1. Your callback doesn't return anything.

2. You don't do anything with the return value of map.

3. You're just trying to perform some action with every element in an
array.

Chapter 3. Functional Building Blocks 20

What's Your GitHub Score?
Here's one that originally came out of an interview question someone shared
on Reddit.

GitHub provides a public API endpoint that returns all of a user's recent public
activity. The JSON response it gives you is an array of objects shaped generally
like this (simpliMed a bit for brevity):

[

{

"id": "3898913063",

"type": "PushEvent",

"public": true,

"actor": "adamwathan",

"repo": "tightenco/jigsaw",

"payload": { /* ... */ }

},

// ...

]

Check it out for yourself by making a GET request to this URL:

https://api.github.com/users/{your-username}/events

The interview task was to take these events and determine a user's "GitHub
Score", based on the following rules:

1. Each PushEvent is worth 5 points.

2. Each CreateEvent is worth 4 points.

3. Each IssuesEvent is worth 3 points.

4. Each CommitCommentEvent is worth 2 points.

5. All other events are worth 1 point.

Chapter 9. What's Your GitHub Score? 76

Loops and Conditionals

First let's take a look at an imperative approach to solving this problem:

function githubScore($username)

{

// Grab the events from the API, in the real world you'd probably use

// Guzzle or similar here, but keeping it simple for the sake of brevity.

$url = "https://api.github.com/users/{$username}/events";

$events = json_decode(file_get_contents($url), true);

// Get all of the event types

$eventTypes = [];

foreach ($events as $event) {

$eventTypes[] = $event['type'];

}

// Loop over the event types and add up the corresponding scores

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

case 'CreateEvent':

$score += 4;

break;

case 'IssuesEvent':

$score += 3;

break;

case 'CommitCommentEvent':

$score += 2;

break;

77 Part 2. A Lot of Practice

default:

$score += 1;

break;

}

}

return $score;

}

Let's start cleaning!

Replace Collecting Loop with Pluck

First things Mrst, let's wrap the GitHub events in a collection:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

- $events = json_decode(file_get_contents($url), true);

+ $events = collect(json_decode(file_get_contents($url), true));

// ...

}

Now let's take a look at this Mrst loop:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = [];

foreach ($events as $event) {

$eventTypes[] = $event['type'];

}

Chapter 9. What's Your GitHub Score? 78

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

// ...

}

}

return $score;

}

We know by know that any time we're transforming each item in an array into
something new we can use map right? In this case, the transformation is so
simple that we can even use pluck, so let's swap that out:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

// ...

}

}

return $score;

}

79 Part 2. A Lot of Practice

Already four lines gone and a lot more expressive, nice!

Extract Score Conversion with Map

How about this second big loop with the switch statement?

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$score = 0;

foreach ($eventTypes as $eventType) {

switch ($eventType) {

case 'PushEvent':

$score += 5;

break;

case 'CreateEvent':

$score += 4;

break;

case 'IssuesEvent':

$score += 3;

break;

case 'CommitCommentEvent':

$score += 2;

break;

default:

$score += 1;

break;

}

}

return $score;

}

Chapter 9. What's Your GitHub Score? 80

We're trying to sum up a bunch of scores here, but we're doing it using a
collection of event types.

Maybe this would be simpler if we could just sum a collection of scores instead?
Let's convert the event types to scores using map, then just return the sum of that
collection:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$scores = $eventTypes->map(function ($eventType) {

switch ($eventType) {

case 'PushEvent':

return 5;

case 'CreateEvent':

return 4;

case 'IssuesEvent':

return 3;

case 'CommitCommentEvent':

return 2;

default:

return 1;

}

});

return $scores->sum();

}

This is a little bit better, but that nasty switch statement is really cramping our
style. Let's tackle that next.

81 Part 2. A Lot of Practice

Replace Switch with Lookup Table

Almost any time you have a switch statement like this, you can replace it with
an associative array lookup, where the case becomes the array key:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$scores = $eventTypes->map(function ($eventType) {

$eventScores = [

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

];

return $eventScores[$eventType];

});

return $scores->sum();

}

This feels cleaner to me because looking up the score for an event seems like a
much more natural model of what we're trying to do vs. a conditional structure
like switch.

The problem is we've lost the default case, where all other events are given a
score of 1.

To get that behavior back, we need to check if our event exists in the lookup
table before trying to access it:

Chapter 9. What's Your GitHub Score? 82

function githubScore($username)

{

// ...

$scores = $eventTypes->map(function ($eventType) {

$eventScores = [

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

];

if (! isset($eventScores[$eventType])) {

return 1;

}

return $eventScores[$eventType];

});

return $scores->sum();

}

All of a sudden this doesn't really seem better than the switch statement, but
fear not, there's still hope!

Associative Collections

Everything is better as a collection, remember?

So far we've only used collections for traditional numeric arrays, but
collections oLer us a lot of power when working with associative arrays as well.

Have you ever heard of the "Tell, Don't Ask" principle? The general idea is
that you should avoid asking an object a question about itself to make another
decision about something you are going to do with that object. Instead, you
should push that responsibility into that object, so you can just tell it what you
need without asking questions Mrst.

83 Part 2. A Lot of Practice

How is that relevant in this example? I'm glad you asked! Let's take a look at
that if statement again:

$eventScores = [

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

];

if (! isset($eventScores[$eventType])) {

return 1;

}

return $eventScores[$eventType];

Here we are asking the lookup table if it has a value for a certain key, and if it
doesn't we return a default value.

Collections let us apply the "Tell, Don't Ask" principle in this situation with the
get method, which takes a key to look up and a default value to return if that key
doesn't exist!

If we wrap $eventScores in a collection, we can refactor the above code like so:

$eventScores = collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

]);

return $eventScores->get($eventType, 1);

Collapsing that down and putting it back into context of the entire function
gives us this:

Chapter 9. What's Your GitHub Score? 84

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

$eventTypes = $events->pluck('type');

$scores = $eventTypes->map(function ($eventType) {

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

});

return $scores->sum();

}

Now we can collapse that entire thing down into a single pipeline:

function githubScore($username)

{

$url = "https://api.github.com/users/{$username}/events";

$events = collect(json_decode(file_get_contents($url), true));

return $events->pluck('type')->map(function ($eventType) {

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

})->sum();

}

85 Part 2. A Lot of Practice

Extracting Helper Functions

Sometimes the bodies of operations like map can grow to several lines, like
looking up the event score has here.

We haven't talked about this much so far, but just because we're working with
collection pipelines doesn't mean we should throw out other good practices
like extracting logic into small functions.

In this case, I would extract both the API call and the score lookup into separate
functions, giving a solution like this:

function githubScore($username)

{

return fetchEvents($username)->pluck('type')->map(function ($eventType) {

return lookupEventScore($eventType);

})->sum();

}

function fetchEvents($username)

{

$url = "https://api.github.com/users/{$username}/events";

return collect(json_decode(file_get_contents($url), true));

}

function lookupEventScore($eventType)

{

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

}

Chapter 9. What's Your GitHub Score? 86

Encapsulating in a Class

What would it look like to fetch someone's GitHub score in a typical modern
PHP web app? Surely we wouldn't just have a bunch of global functions Noating
around calling each other right?

One approach is to create a class that works kind of like a namespace and
exposes static functions so you can control their visibility:

class GitHubScore

{

public static function forUser($username)

{

return self::fetchEvents($username)

->pluck('type')

->map(function ($eventType) {

return self::lookupScore($eventType);

})->sum();

}

private static function fetchEvents($username)

{

$url = "https://api.github.com/users/{$this->username}/events";

return collect(json_decode(file_get_contents($url), true));

}

private static function lookupScore($eventType)

{

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

}

}

87 Part 2. A Lot of Practice

With this class, I could make a call like GitHubScore::forUser('adamwathan') and
get a score back.

One of the issues with this approach is that because we're not working with
actual objects, we can't keep track of any state anymore. Instead, you end up
passing the same parameter around in a bunch of places because you don't
really have anywhere to store that data.

It's not too bad in this example, but you can see here we have to pass $username

into fetchEvents since otherwise the method has no way of knowing which
user's activity to fetch:

class GitHubScore

{

public static function forUser($username)

{

return self::fetchEvents($username)

->pluck('type')

->map(function ($eventType) {

return self::lookupScore($event['type']);

})->sum();

}

private static function fetchEvents($username)

{

$url = "https://api.github.com/users/{$this->username}/events";

return collect(json_decode(file_get_contents($url), true));

}

// ...

}

This can get ugly pretty fast when you've extracted a handful of small methods
that need access to the same data.

A neat trick I use in situations like this is to create what I've been calling private
instances.

Chapter 9. What's Your GitHub Score? 88

Instead of doing all of the work with static methods, I create an instance of the
class in the Mrst static method, then delegate all of the work to that instance.

Here's what it looks like:

class GitHubScore

{

private $username;

private function __construct($username)

{

$this->username = $username;

}

public static function forUser($username)

{

return (new self($username))->score();

}

private function score()

{

$this->events()->pluck('type')->map(function ($eventType) {

return $this->lookupScore($eventType);

})->sum();

}

private function events()

{

$url = "https://api.github.com/users/{$this->username}/events";

return collect(json_decode(file_get_contents($url), true));

}

89 Part 2. A Lot of Practice

private function lookupScore($eventType)

{

return collect([

'PushEvent' => 5,

'CreateEvent' => 4,

'IssuesEvent' => 3,

'CommitCommentEvent' => 2,

])->get($eventType, 1);

}

}

You get the same convenient static API, but internally you get to work with an
object that has it's own state, which keeps your method signatures short and
simple. Pretty neat stuL!

This is a sample of "Refactoring to Collections" by Adam Wathan. To learn more
about the book and read the rest, head over to http://adamwathan.me/refactoring-to-
collections.

Chapter 9. What's Your GitHub Score? 90

	Contents
	A Bit of Theory
	Imperative vs. Declarative Programming
	Imperative Programming
	Declarative Programming

	Higher Order Functions
	Noticing Patterns

	Functional Building Blocks
	Each
	Map
	Map vs. Each

	Filter
	Reject

	Reduce
	With Great Power

	Transforming Data
	Thinking in Steps
	The Problem with Primitives
	Arrays as Objects

	Introducing Collections
	A Note on Mutability
	Quacking Like... an Array?
	ArrayAccess
	Countable
	IteratorAggregate

	The Golden Rule of Collection Programming

	A Lot of Practice
	Pricing Lamps and Wallets
	Replace Conditional with Filter
	Replace || with Contains
	Reduce to Sum
	Replace Nested Loop with FlatMap
	Plucking for Fun and Profit

	CSV Surgery 101
	Everything is Better as a Collection

	Binary to Decimal
	A Quick Refresher
	Using a For Loop
	Breaking It Down
	Reversing the Collection
	Mapping with Keys

	What's Your GitHub Score?
	Loops and Conditionals
	Replace Collecting Loop with Pluck
	Extract Score Conversion with Map
	Replace Switch with Lookup Table
	Associative Collections
	Extracting Helper Functions
	Encapsulating in a Class

	Formatting a Pull Request Comment
	Concatenating in a Loop
	Map and Implode

	Stealing Mail
	Replace Nested Check with Contains
	Contains as a Higher Order Function

	Choosing a Syntax Handler
	Looking for a Match
	Getting the Right Checker
	Replace Iteration with First
	A Hidden Rule
	Providing a Default
	The Null Object Pattern
	The Null Checker

	Tagging on the Fly
	Extracting the Loop
	Normalizing with Map

	Nitpicking a Pull Request
	A Fork in the Code
	Learning from Smalltalk
	Collection Macros
	Chainable Conditions

	Comparing Monthly Revenue
	Matching on Index
	Zipping Things Together
	Using Zip to Compare

	Transposing Form Input
	Quick and Dirty
	Identifying a Need
	Introducing Transpose
	Implementing Transpose
	Transpose in Practice

	Ranking a Competition
	Zipping-in the Ranks
	Dealing with Ties
	One Step at a Time
	Grouping by Score
	Adjusting the Ranks
	Collapse and Sort
	Cleaning Up
	Grouping Operations
	Breaking the Chain
	The Pipe Macro

	Afterword

